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Abstract
The relation between noise and Fick’s diffusion coefficient in barrier limited
transport associated with hopping or tunnelling mechanisms of particles
exhibiting the asymmetric simple exclusion processes (ASEP) is physically
assessed by means of Monte Carlo simulations. For a closed ring consisting
of a large number of barriers the diffusion coefficient is related explicitly to the
current noise, thus revealing the existence of a generalized Nyquist–Einstein
relation. Both diffusion and noise are confirmed to decrease as the square root
of the number of barriers as a consequence of the correlation induced by ASEP.
By contrast, for an open linear chain of barriers the diffusion coefficient is found
to be no longer related to current noise. Here diffusion depends on particle
concentration but is independent of the number of barriers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The inter-relation between noise and diffusion in charge transport is a pillar of non-equilibrium
kinetics [1–5]. The existence of such inter-relations proved to be of relevant interest for
determining the diffusion coefficient, a kinetic coefficient difficult to obtain, through a noise
measurement. For a kinetics described within a continuous transport model, where quasi-
particles undergo local scattering events between stochastic free flights, the inter-relation
between noise and diffusion was investigated by a number of theoretical approaches ranging
from using analytical models [1, 3, 5] to numerical solutions of the appropriate kinetic
equations [2, 4]. The case of a barrier transport model, dominated by tunnelling and/or hopping
processes, is less developed. Here, noise was mostly investigated for the case of single and
multiple quantum barriers [6–8]. By contrast, a few seminal works have tackled the problem
of noise in hopping systems [9, 10] and that of diffusion in both tunnelling and hopping
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systems [11–13]. For the case of a very large number of barriers, the asymmetric simple
exclusion process (ASEP) has been widely used in the recent past as a relevant physical model
for the description of non-equilibrium dynamics [14–19]. In this context, two systems of basic
interest are the closed ring and the open linear chain consisting of a set of multiple barriers,
which are the prototypes of closed and open systems driven by hopping or tunnelling transport
mechanisms. Here, diffusion was investigated by analytical means [14, 20], and current noise
with Monte Carlo simulations [9, 10]. However, the attempt to interrelate diffusion and current
noise in these systems remains a largely unexplored issue. In particular, the dependence or less
of diffusion on the number of barriers, and the prediction of a partial or complete suppression
of shot noise in the presence of a large number of barriers, are intriguing features still lacking
a microscopic interpretation [9, 10, 21].

The aim of the present work is to address this issue by using first-principles Monte Carlo
simulations. Accordingly, diffusion is obtained by the calculation of the time evolution of
the spreading in space of a particle ensemble and current noise by the calculation of the
autocorrelation function of current fluctuations as measured in the outside circuit. The main
features of diffusion and noise and their inter-relation are thus quantitatively assessed on kinetic
physical grounds.

2. Theory

We take a one-dimensional physical system consisting of a number Nw of hopping sites,
separated by a constant distance l, whose total length is L = Nwl. Each site is adjacent to
two other sites but, in analogy with [14], we assume that tunnelling events can occur only
between nearest neighbours and only in the forward direction. The transition rate is assumed to
have a constant value �. By imposing a current determined by a rate of transition � = 1013 s−1

onto a structure with l = 3.2 nm (these are taken as plausible parameters for a real case) we
evaluate current, diffusion, and noise, making use of an ensemble Monte Carlo simulator. It is
convenient to define the dimensionless carrier concentration as ρ = 〈N〉/Nw , where 〈N〉 is the
average number of carriers inside the sample. We introduce correlations between carriers by
imposing a maximum occupation number ν for each site. In particular, when ν = 1 if a site is
occupied by one carrier then no other carrier can jump to this site, and thus carriers are strongly
correlated. In this case the interaction is known in the literature [14] as the asymmetric simple
exclusion process (ASEP). When ν → ∞ a site can be occupied by an arbitrary number of
carriers, and thus carriers are totally uncorrelated.

The instantaneous current I (t) is calculated as [22]

I (t) = e

L

N(t)∑

i=1

vi (t) = e

L
N(t)vd(t), (1)

where e is the unit charge, N(t) the instantaneous number of carriers inside the structure, vi (t)
the instantaneous velocity of the i th carrier, vd(t) the instantaneous drift velocity of the carrier
ensemble. For a steady state, I (t) is a stochastic variable that accounts for fluctuations in carrier
number and velocity. In particular, for our discrete system vi (t) = lδξi/δt , with ξi the position
index of the i th particle [11]. For the (longitudinal) diffusion coefficient D, following Fick’s
law we make use of its definition as a spatial spreading quantity [23],

D = 1

2

δ〈(�z(t))2〉
δt

, (2)

where �z(t) is the distance between the final and the initial hopping sites, brackets mean
average over a statistical ensemble (up to 103) of identical systems. The time derivative is
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carried out in a time domain sufficiently long for extrapolating the long time limit, for which
D is found to be independent of time. The spectral density of current fluctuations at zero
frequency is [22]

SI = 4
∫ ∞

0
dt〈δ I (0)δ I (t)〉 = Svd

I + SN
I + SNvd

I + Svd N
I , (3)

where Svd
I , SN

I and (SNvd
I + Svd N

I ) refer to the three contributions (drift velocity, number
and cross-correlations between them) in which the total spectral density can be decomposed.
With Monte Carlo simulations these terms can be calculated separately. The Fano factor is
γ = SI /(2e〈I 〉).

3. Results and discussion

We now consider alternatively periodic boundary (closed ring) or open boundary (linear chain)
conditions.

3.1. Ring (periodic system)

The periodic boundary conditions adequate to this structure consist in imposing that, for a finite
number of sites, the last site is directly connected to the first one by the same hopping rate �.
Let us consider the case of correlated carriers (ν = 1). For a given carrier concentration and
for large Nw , analytical theory [14, 9] gives the following predictions: for the average current

〈I 〉1 = e�ρ(1 − ρ), (4)

and for the diffusion coefficient �1 in the long time limit (the symbol � follows the notation
of [14] with subscript 1 labelling the case of the ring geometry),

�1 = l2�

2

√
π

2

(1 − ρ)
3
2

(ρNw)
1
2

. (5)

(We suppose that in general the value of �1 can differ from that of D in equation (2).) The
results of the simulations for the diffusion coefficient are reported in figure 1. Here, the identity
�1 = D is confirmed for all the concentrations considered. For the current noise (in this case
due only to velocity fluctuations since the number of carriers is rigorously constant in time) the
simulations confirm the relation

SI ≡ Svd
I = 4e2

l2
ρ2�1, (6)

with the corresponding Fano factor (figure 2), given by

γ =
√

π

2

ρ1/2(1 − ρ)1/2

N1/2
w

. (7)

Equation (6), by revealing a strict relation between noise and diffusion, takes the form
of a generalized Nyquist–Einstein relation [1, 2, 24–26]. The diffusion and noise suppression
going as 1/

√
Nw , confirmed by the simulations, is attributed to the strong correlation among

carriers. To support this interpretation, we considered also the case of uncorrelated carriers
(i.e. in the absence of ASEP) where, for a given carrier concentration, analytical theory gives
the following predictions: for the average current [9]

〈I 〉0 = e�ρ, (8)
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Figure 1. Closed ring. Comparison between the analytical diffusion coefficient in equations (5)
and (9) (dashed lines) and that obtained from simulations (symbols).
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Figure 2. Closed ring. Comparison between the analytical Fano factor in equations (7), (11) (dashed
lines) and that obtained from simulations (symbols).

for the diffusion coefficient [12]

D0 = l2�

2
(9)

(with the subscript 0 labelling the case of uncorrelated particles) and for the current noise the
standard Nyquist–Einstein relation holds [22]:

SI ≡ Svd
I = 4e2

l2
ρ2 D0

N
, (10)

with the corresponding Fano factor

γ = 1

Nw

. (11)

The result of simulations confirms that, in the absence of ASEP, diffusion becomes independent
of Nw (see the curve uncorrelated in figure 1), and the Fano factor decreases as 1/Nw (see the
curve uncorrelated in figure 2).
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It is reasonable that, in the case of correlated particles, the diffusion is less than in the
free dynamics, since, in the former case, the motion of the particle ensemble is limited by the
periodic boundary condition.

In all the cases considered here (even when ν = 1 so that the non-passing constraint is
obeyed) the time evolution of the variance in space of the carrier ensemble is found to be linear,
contrary to the suggestion of a subdiffusive (and thus sublinear) behaviour [14].

The good agreement between the results of the simulations and analytical predictions is
taken as a validation of the numerical approach developed here.

3.2. Open linear chain

The boundary conditions adequate to this structure consist in connecting the two terminals of
the device to two reservoirs, where �in ×� and �out ×� are the rates of transition from the left
reservoir to the first site of the device, and from the last site of the device to the right reservoir,
respectively. For convenience, the values of �in(out) are taken in the range between 0 and 1,
being equivalent respectively to the α and β parameters in [14, 20] and to fL and (1 − fR)

in [9].
Let us first consider the case of correlated carriers (ASEP model). For a given carrier

concentration and for large Nw , analytical theory gives for the average current the same
expression as equation (4). The diffusion coefficient of the linear chain �2 (obtained as �1 with
the subscript 2 labelling the case of the open linear chain) takes the forms [20]: if �in+�out = 1,

�2 =

⎧
⎪⎪⎨

⎪⎪⎩

l2�

2
�in�out|�in − �out| when �in �= �out

l2�

2

1

4(π Nw)1/2
when �in = �out

(12)

and, if �in = �out = 1,

�2 = l2�

2

3(2π1/2)

64N1/2
w

. (13)

(Again we suppose that in general the value of �2 can differ from that of D in equation (2).)
The different analytical expressions for �2 are a consequence of the different values taken by
�in,out and, in turn, by ρ in the steady state. Indeed, the tuning of the �in,out controls the strength
of the correlation among carriers induced by ASEP and thus the particle density ρ inside the
device, as summarized in the phase diagram reported in figure 2 of [14]. Figure 3 shows the
Fick’s diffusion coefficient D obtained from simulations for the case of the linear chain. Here,
D is found to be practically independent of Nw . Furthermore, in the presence of ASEP the value
of D is systematically lower than that of uncorrelated particles D0. For the case �in +�out = 1,
the value of the diffusion coefficient is well described by the relation

D = l2�

2
�out = l2�

2
(1 − ρ). (14)

We notice that in the above expression, D becomes vanishingly small for �out → 0 because in
this limit spreading and current of carriers through the structure tends to stop. In the presence
of ASEP the values of diffusion obtained by simulations are found to differ significantly from
those given by analytical expressions, thus implying that the quantities �2 and D describe
different microscopic processes. To shed some light on the physical reason for this difference,
figure 4 reports the results of the simulations for the current noise (in this case due to the sum
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Figure 3. Linear chain. Spreading diffusion coefficient obtained from simulations in the presence
of ASEP and for different input and output rates. The value for uncorrelated carriers is reported for
comparison. Curves are guides to the eyes.
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Figure 4. Linear chain. Comparison between analytical Fano factors in equation (16) and full shot
noise (dashed lines), with those obtained from simulations (symbols).

of all the contributions in equation (3)) in terms of the Fano factor. From simulations, within
numerical uncertainty we find

SI ≡ Svd
I + SN

I + SNvd
I + Svd N

I = 4e2

l2
�2 (15)

with the corresponding Fano factor satisfying the relation

γ = 2�2

�l2ρ(1 − ρ)
. (16)

For example, if �out → 0, the exit of the particles is highly suppressed, the device will reach
high density and, since particles are correlated, the motion of the ensemble in the device will be
mostly coherent, with low diffusion. From the above expressions we conclude that �2 describes
the total current noise instead of Fick’s diffusion process. Indeed, �2 is found to agree well
with available analytical expressions, as predicted by equation (15), in full agreement with
the results of [20]. By contrast, the quantity D is found: (i) to depend upon the degree of
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Figure 5. Different contributions and total noise power for the case of ASEP in the open linear case
with �in = �out = 1. Curves are guides to the eyes.

correlation, (ii) to be independent of the number of sites, and (iii), when �in + �out = 1, to be
proportional to �out.

Since �2 is related to the ‘number of particles that entered the device up to time t’ [20],
it is possible to show that this stochastic quantity accounts for both velocity and number
fluctuations, being thus related to total current noise.

By turning off the ASEP correlation, for a given carrier concentration, analytical theories
give: (i) for the average current equation (8), (ii) for the diffusion coefficient equation (9), and
(iii) for the current noise (full shot noise is expected)

SI ≡ SN
I = 2e2

L2
〈vd〉2〈N〉τTR = 2e〈I 〉 (17)

which follows from a correlation function with triangular shape vanishing at the transit time
τTR = L/〈vd〉. As a consequence γ = 1, as confirmed by the results of the simulations
reported in figure 4.

Finally, we have investigated separately the contributions to the total current noise which
come from velocity, number, and their cross-correlations in the presence of ASEP. From the
results in figure 5 we can see that different contributions are comparable in magnitude with the
cross-terms that, being negative, are responsible for shot noise suppression. We further notice
that the comparison between the two uncorrelated current noise levels belonging to the closed
ring (figure 2) and to the open linear chain (figure 3) shows that shot noise of the linear chain
exceeds the velocity noise of the closed ring for the ratio L/ l, as expected.

4. Conclusions

We have carried out a simulative investigation of the inter-relations between noise and diffusion
in barrier limited transport for the ASEP condition. For the case of the closed ring, since the
number of particles is fixed, only the noise related to velocity fluctuations is present. Here, the
diffusion coefficient obtained from the Fick’s law is explicitly related to current noise, both in
the presence and in the absence of the ASEP. Therefore, evidence is provided for the existence
of a generalized Nyquist–Einstein relation allowing the determination of diffusion from a noise
measurement or vice versa. The correlations introduced by ASEP are found to be responsible
for the dependence of diffusion upon the inverse square root of the device length.
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For the case of the open linear chain the diffusion coefficient obtained from Fick’s law is
no longer related to the current noise, which now contains contributions coming from velocity,
number, and their cross-correlations. Here the diffusion coefficient is found to be independent
of the number of sites, but to depend on the strength of the correlation that is ultimately
controlled by the carrier density. In this case, owing to the open boundaries, the number of
particles is not constant through the simulation, and the charge density can fluctuate in time.

Finally, we remark that analytical results concerning �1,2 in the presence of ASEP [14, 20]
are correctly interpreted only if �1,2 are related to the variance in the number of carriers that
entered up to time t into the system from a given cross-sectional area [20] and not to a diffusion
constant.
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[4] Shiktorov P, Starikov E, Gružinskis V, Gonzalez T, Mateos J, Pardo D, Reggiani L, Varani L and Vaissiere J C

2001 Nuovo Cimento 24 1
[5] Katilius R 2004 Phys. Rev. B 69 245315
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